Translate

Mostrando postagens com marcador random forrest. Mostrar todas as postagens
Mostrando postagens com marcador random forrest. Mostrar todas as postagens

21 agosto 2025

Random Forrest no trabalho do auditor

O resumo: 


 Diante da incerteza econômica global, a auditoria financeira tornou-se essencial para a conformidade regulatória e mitigação de riscos. Os métodos tradicionais de auditoria manual estão cada vez mais limitados pelos grandes volumes de dados, estruturas empresariais complexas e evolução das táticas de fraude. Este estudo propõe uma estrutura de auditoria financeira empresarial orientada por IA e de identificação de alto risco, utilizando aprendizado de máquina para melhorar a eficiência e a precisão. Com um conjunto de dados das quatro grandes firmas de auditoria (EY, PwC, Deloitte, KPMG) de 2020 a 2025, a pesquisa examina tendências em avaliação de risco, violações de conformidade e detecção de fraudes. O conjunto inclui indicadores como número de projetos de auditoria, casos de alto risco, instâncias de fraude, violações de conformidade, carga de trabalho dos funcionários e satisfação dos clientes, capturando tanto os comportamentos de auditoria quanto o impacto da IA nas operações. Para construir um modelo robusto de predição de riscos, três algoritmos — Support Vector Machine (SVM), Random Forest (RF) e K-Nearest Neighbors (KNN) — são avaliados. O SVM usa otimização de hiperplanos para classificações complexas, o RF combina árvores de decisão para lidar com dados não lineares e de alta dimensionalidade com resistência ao overfitting, e o KNN aplica aprendizado baseado em distância para desempenho flexível. Por meio de validação cruzada hierárquica K-fold e avaliação com F1-score, acurácia e recall, o Random Forest alcança o melhor desempenho, com F1-score de 0,9012, destacando-se na identificação de fraudes e anomalias de conformidade. A análise de importância das variáveis revela frequência de auditorias, violações anteriores, carga de trabalho dos funcionários e avaliações dos clientes como principais preditores. O estudo recomenda a adoção do Random Forest como modelo central, com aprimoramento de variáveis via feature engineering e implementação de monitoramento de riscos em tempo real. Esta pesquisa traz contribuições valiosas sobre o uso de aprendizado de máquina para auditoria inteligente e gestão de riscos em empresas modernas.